|
Microscope image processing is a broad term that covers the use of digital image processing techniques to process, analyze and present images obtained from a microscope. Such processing is now commonplace in a number of diverse fields such as medicine, biological research, cancer research, drug testing, metallurgy, etc. A number of manufacturers of microscopes now specifically design in features that allow the microscopes to interface to an image processing system. ==Image acquisition== Until the early 1990s, most image acquisition in video microscopy applications was typically done with an analog video camera, often simply closed circuit TV cameras. While this required the use of a frame grabber to digitize the images, video cameras provided images at full video frame rate (25-30 frames per second) allowing live video recording and processing. While the advent of solid state detectors yielded several advantages, the real-time video camera was actually superior in many respects. Today, acquisition is usually done using a CCD camera mounted in the optical path of the microscope. The camera may be full colour or monochrome. Very often, very high resolution cameras are employed to gain as much direct information as possible. Cryogenic cooling is also common, to minimise noise. Often digital cameras used for this application provide pixel intensity data to a resolution of 12-16 bits, much higher than is used in consumer imaging products. Ironically, in recent years, much effort has been put into acquiring data at video rates, or higher (25-30 frames per second or higher). What was once easy with off-the-shelf video cameras now requires special, high speed electronics to handle the vast digital data bandwidth. Higher speed acquisition allows dynamic processes to be observed in real time, or stored for later playback and analysis. Combined with the high image resolution, this approach can generate vast quantities of raw data, which can be a challenge to deal with, even with a modern computer system. It should be observed that while current CCD detectors allow very high image resolution, often this involves a trade-off because, for a given chip size, as the pixel count increases, the pixel size decreases. As the pixels get smaller, their well depth decreases, reducing the number of electrons that can be stored. In turn, this results in a poorer signal to noise ratio. For best results, one must select an appropriate sensor for a given application. Because microscope images have an intrinsic limiting resolution, it often makes little sense to use a noisy, high resolution detector for image acquisition. A more modest detector, with larger pixels, can often produce much higher quality images because of reduced noise. This is especially important in low-light applications such as fluorescence microscopy. Moreover, one must also consider the temporal resolution requirements of the application. A lower resolution detector will often have a significantly higher acquisition rate, permitting the observation of faster events. Conversely, if the observed object is motionless, one may wish to acquire images at the highest possible spatial resolution without regard to the time required to acquire a single image. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Microscope image processing」の詳細全文を読む スポンサード リンク
|